

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

LB650 cavity RF design update

Timergali Khabiboulline
Fermilab and IIFC collaboration web-meeting
29 March 2016

650 MHz cavities RF design and 650 MHz power coupler

- 650 MHz cavities and power coupler were developed for ProjectX:
 - CW operation
 - Beam current 1 mA
 - Coupler compatible with both types of 650 MHz cavities
- ProjectX was transformed to PIP-II with new parameters:
 - Pulsed operation
 - Beam current 2 mA
- Design of HB650 dressed cavity was changed:
 - LFD reduced
 - Tuner efficiency increased, HV stiffness increased
 - Position of power coupler was moved away from the cavity
- No funds for design of LB650 dressed cavity

LB650 cavity RF design history

- RF design of LB650 cavity was done before 2013
- No funds for LB650 dressed cavity design after 2013
- 2015 decision: VECC will manufacture LB650 cavities
 - VECC will continue LB650 design
 - FNAL transfer LB650 cavity design to VECC
 - Prepare all current LB650 cavity design documents for transfer
- Check LB650 cavity design for compatibility with:
 - 650 MHz frequency tuner
 - 650 MHz power coupler
- Transfer LB650 cavity design to VECC

Requirements for 650 MHz cavity design

Superconducting RF: Strategy and Organization

Slava Yakovlev

PIP-II Machine Advisory Committee Meeting

15-17 March 2016

- LB 650 and HB 650 design similarities implements the same strategy as SSR:
 - Mechanical Tuners and resonance control strategies
 - Low df/dP cavity and helium vessel integrated designs
 - High Power RF couplers
 - Cavity string support structure
 - Cryogenic plumbing
 - Significant number of common parts

Fermilab

3/15/2016

Slava Yakovlev | 2016 P2MAC

10

HB650 cavity RF design modification

- RF design of the cavity was changed from β =0.90 to β =0.92
- Stiffening ring radius was reduced to minimize df/dP
- Conical NbTi flanges of the cavity were stiffened to reduce LFD
- Power coupler position for HB650 was moved away by 26 mm

LB650 cavity RF design and 650 MHz power coupler

- No space for helium vessel of LB650 cavity
- Increase of beam pipe diameter

Coupler position for 2 mA

LB650 cavity why 118 mm beam pipe

650 MHz power coupler and LB650 cavity

RF parameter of new design of LB650 cavity

RF design summary

Parameter	FNAL	JLAB	FNAL	Change
	83 mm	100 mm	83/118 mm	%
eta_{G}	0.61	0.61	0.61	
$oldsymbol{eta}_{opt}$	0.647	0.645	0.65	
$R/Q(\beta_{opt})$, Ohms	377	317.5	356.3	-5.5
$E_{surf}/E(\beta_{opt})$	2.26	2.64	2.33	3.1
$B_{surf}/E(\beta_{opt}),$ mT/(MeV/m)	4.21	4.64	4.41	4.8
G, Ohms	191	185	187	-2.1
G*R/Q	72007	58737	66628	-7.5

LB650 cavity new design summary

- Easy integration of coupler and tuner
- Same end assembly as for HB650
 - Optimized for low df/dP and LFD
- Same as for HB650 parts of beam assembly
- Same as for HB650 bellows between cavities
- Same as for HB650 power coupler with same antenna length
- Same as for HB650 interface for tuner
- Electrodynamic parameters are not sacrificed significantly:
 - Higher surface magnetic fields by only 4.8 %
 - RF losses on cavity walls increased by only 7.5 %

Additional slides

• Major dimensions of LB650 cavity end assembly

Additional slides

650 MHz, beta=0.61, 5 –cell cavity geometry

"COLD" (As Designed)

End cell Mid cell

r	59	r	41.5
R	194.95	R	194.95
	68.365		
A		A	54
В	48	В	58
a	14	a	14
b	26	b	25
α	0.7°	α	2°

"WARM" (As in Drawings)

End cell Mid cell

r	58.884	r	41.36
R	195.03	R	195.03
L	68.46	\mathbf{L}	70.44
A	53.88	A	53.88
В	47.87	B	57.88
a	14.22	a	14.22
b	26.24	b	25.235
α	0.7°	α	2°

